Fluorine Oxidation Number

admin

Fluorine’s oxidation number is always negative. The most electronegative b. The oxidation numbers of alkali metals are always positive. The least electronegative c. Elements such as P, N, and S have positive oxidation numbers in some compounds but have negative oxidation numbers in others. Oxidation number for fluorine (the author responds) Stonestreet, Richard H. Publication: Journal of Chemical Education. Pub Date: April 1972 DOI: 10.1021. Fluorine's oxidation number is -1.In an ion, the oxidation number is equal to its charge. Above 200 °C, OF 2 decomposes to oxygen and fluorine via a radical mechanism. So that's the reason why oxygen has a +2 oxidation state in OF2. When iodine forms a compound with a.

Formal Charge

On the page discussing the covalent bond, it is shown that the density of electrons in a covalent bond is shared between both atoms. When drawing Lewis Structures it is sometimes useful to see which structure can be deemed the best. The Formal Charge is a somewhat artificial device that exists in the minds of chemists (not within the molecules, themselves) to help keep track of electrons in their bonding configurations. The Formal Charge is the charge an atom in a molecule or polyatomic ion would have if all of the bonding electrons were divided equally between atoms in the bond.

Formal Charge 'Rules'

Here are some rules for determining the Formal Charge on each atom in a molecule or polyatomic ion:

  1. Electrons within a Lone Pair on an atom are assigned exclusively to that atom.
  2. Half of the electrons in each bond around an atom are assigned to that atom.
  3. The Formal Charges on all atoms in a molecule must sum to zero; for a polyatomic ion the Formal Charges must sum to the charge on the ion (which may be positive or negative).

The Formal Charge is defined by the relationship:

Formal Charge = [number of valence electrons in an isolated atom] - [(number of lone pair electrons) + ½ (number of bonding electrons)]

With the definitions above, we can calculate the Formal Charge on the thiocyanate Ion, SCN-:

Table (PageIndex{1})
SCN
Valence electrons645
Lone pair electrons602
Shared electrons (bonds)2 (1)8 (4)6 (3)
Formal Charge = 6 - (6 + ½·2) 4 - (0 + ½·8) 5 - (2 + ½·6)
Formal Charge-100

Notice how the sum of all of the formal charges adds up to the charge of the thiocyanate ion (-1). When drawing Lewis Structures, we use this information to determine which structure would be the most likely. The following rules apply:

  1. Smaller absolute Formal Charges are more favorable (recall that the absolute value of a number is > 0)
  2. Negative Formal Charges should be on the most electronegative atoms
  3. Like charges should not be on adjacent atoms
Article
Fluorine
Please select which sections you would like to print:
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.

Our editors will review what you’ve submitted and determine whether to revise the article.

Join Britannica's Publishing Partner Program and our community of experts to gain a global audience for your work!
Articles from Britannica Encyclopedias for elementary and high school students.
Karl ChristeSee All Contributors
Research Professor of Chemistry, Department of Chemistry, University of Southern California, Los Angeles, Calif.
Alternative Title: F

Fluorine (F), most reactive chemical element and the lightest member of the halogen elements, or Group 17 (Group VIIa) of the periodic table. Its chemical activity can be attributed to its extreme ability to attract electrons (it is the most electronegative element) and to the small size of its atoms.

118 Names and Symbols of the Periodic Table Quiz
The periodic table is made up of 118 elements. How well do you know their symbols? In this quiz you’ll be shown all 118 chemical symbols, and you’ll need to choose the name of the chemical element that each one represents.
Element Properties
atomic number9
atomic weight18.998403163
melting point−219.62 °C (−363.32 °F)
boiling point−188 °C (−306 °F)
density (1 atm, 0 °C or 32 °F)1.696 g/litre (0.226 ounce/gallon)
oxidation states−1
electron config.1s22s22p5

History

The fluorine-containing mineral fluorspar (or fluorite) was described in 1529 by the German physician and mineralogist Georgius Agricola. It appears likely that crude hydrofluoric acid was first prepared by an unknown English glassworker in 1720. In 1771 the Swedish chemist Carl Wilhelm Scheele obtained hydrofluoric acid in an impure state by heating fluorspar with concentrated sulfuric acid in a glass retort, which was greatly corroded by the product; as a result, vessels made of metal were used in subsequent experiments with the substance. The nearly anhydrous acid was prepared in 1809, and two years later the French physicist André-Marie Ampère suggested that it was a compound of hydrogen with an unknown element, analogous to chlorine, for which he suggested the name fluorine. Fluorspar was then recognized to be calcium fluoride.

The isolation of fluorine was for a long time one of the chief unsolved problems in inorganic chemistry, and it was not until 1886 that the French chemist Henri Moissan prepared the element by electrolyzing a solution of potassium hydrogen fluoride in hydrogen fluoride. He received the 1906 Nobel Prize for Chemistry for isolating fluorine. The difficulty in handling the element and its toxic properties contributed to the slow progress in fluorine chemistry. Indeed, up to the time of World War II the element appeared to be a laboratory curiosity. Then, however, the use of uranium hexafluoride in the separation of uranium isotopes, along with the development of organic fluorine compounds of industrial importance, made fluorine an industrial chemical of considerable use.

Occurrence and distribution

The fluorine-containing mineral fluorspar (fluorite, CaF2) has been used for centuries as a flux (cleansing agent) in various metallurgical processes. The name fluorspar is derived from the Latin fluere, “to flow.” The mineral subsequently proved to be a source of the element, which was accordingly named fluorine. The colourless, transparent crystals of fluorspar exhibit a bluish tinge when illuminated, and this property is accordingly known as fluorescence.

Get a Britannica Premium subscription and gain access to exclusive content. Subscribe Now

Fluorine is found in nature only in the form of its chemical compounds, except for trace amounts of the free element in fluorspar that has been subjected to radiation from radium. Not a rare element, it makes up about 0.065 percent of Earth’s crust. The principal fluorine-containing minerals are (1) fluorspar, deposits of which occur in Illinois, Kentucky, Derbyshire, southern Germany, the south of France, and Russia and the chief source of fluorine, (2) cryolite (Na3AlF6), chiefly from Greenland, (3) fluoroapatite (Ca5[PO4]3[F,Cl]), widely distributed and containing variable amounts of fluorine and chlorine, (4) topaz (Al2SiO4[F,OH]2), the gemstone, and (5) lepidolite, a mica as well as a component of animal bones and teeth.

Physical and chemical properties

At room temperature fluorine is a faintly yellow gas with an irritating odour. Inhalation of the gas is dangerous. Upon cooling fluorine becomes a yellow liquid. There is only one stable isotope of the element, fluorine-19.

Because fluorine is the most electronegative of the elements, atomic groupings rich in fluorine are often negatively charged. Methyl iodide (CH3I) and trifluoroiodomethane (CF3I) have different charge distributions as shown in the following formulas, in which the Greek symbol δ indicates a partial charge:

The first ionization energy of fluorine is very high (402 kilocalories per mole), giving a standard heat formation for the F+Popcorn time free online back to the future [1985] movie site. cation of 420 kilocalories per mole.

The small size of the fluorine atom makes it possible to pack a relatively large number of fluorine atoms or ions around a given coordination centre (central atom) where it forms many stable complexes—for example, hexafluorosilicate (SiF6)2− and hexafluoroaluminate (AlF6)3−. Fluorine is the most powerfully oxidizing element. No other substance, therefore, is able to oxidize the fluoride anion to the free element, and for this reason the element is not found in the free state in nature. For more than 150 years, all chemical methods had failed to produce the element, success having been achieved only by the use of electrolytic methods. However, in 1986 American chemist Karl O. Christe reported the first chemical preparation of fluorine, where “chemical preparation” means a method that does not use techniques such as electrolysis, photolysis, and discharge or use fluorine itself in the synthesis of any of the starting materials. He used K2MnF6 and antimony pentafluoride (SbF5), both of which can be easily prepared from HF solutions.

Fluorine Oxidation Numbers

The high oxidizing power of fluorine allows the element to produce the highest oxidation numbers possible in other elements, and many high oxidation state fluorides of elements are known for which there are no other corresponding halides—e.g., silver difluoride (AgF2), cobalt trifluoride (CoF3), rhenium heptafluoride (ReF7), bromine pentafluoride (BrF5), and iodine heptafluoride (IF7).

Fluorine (F2), composed of two fluorine atoms, combines with all other elements except helium and neon to form ionic or covalent fluorides. Some metals, such as nickel, are quickly covered by a fluoride layer, which prevents further attack of the metal by the element. Certain dry metals, such as mild steel, copper, aluminum, or Monel (a 66 percent nickel, 31.5 percent copper alloy), are not attacked by fluorine at ordinary temperatures. For work with fluorine at temperatures up to 600 °C (1,100 °F), Monel is suitable; sintered alumina is resistant up to 700 °C (1,300 °F). When lubricants are required, fluorocarbon oils are most suitable. Fluorine reacts violently with organic matter (such as rubber, wood, and cloth), and controlled fluorination of organic compounds by the action of elemental fluorine is only possible if special precautions are taken.

Fluorine Chemical Formula

Quick Facts

Explain Why Fluorine Oxidation Number Is Always Negative

key people
related topics